
§11 − #2 屈折による浮き上がり

図において、媒質 I 、媒質 II 、媒質 II 、媒質 III は屈折率がそれぞれ n_1 、 n_2 、 n_3 の媒質である.また、媒質 I と 媒質 II の厚さは h_1 と h_2 である. 媒質 I の底に点光源 S を置く.S を出て媒質 I から

媒質 Π を通り媒質 Π へ進む光線がある。図のように、媒質 Π での入射角を θ_1 、媒質 Π での屈折角を θ_2 、媒質 Π での屈折角を θ_3 とする。ただし、各媒質の境界面は全て平行であり、 $n_1 > n_2 > n_3$ とする。

- (1) θ_1 , θ_2 , n_1 , n_2 の間に成りたつ関係式を示せ.
- (2) この光線の媒質 I での波長が λ_1 であるとき、媒質 II での波長 λ_2 を λ_1 , n_1 , n_2 で表せ.
- (3) 媒質 I と媒質 II の境界面で全反射を起こす θ_1 の最小値 θ_C と n_1 , n_2 と の関係を求めよ.
- (4) S を媒質 Π から見たとき,S は媒質 Π と媒質 Π の境界面から鉛直方向に 距離が h_1' の位置 S_1 にあるよう見えた.このとき h_1' と h_1 , θ_1 , θ_2 との 関係を求めよ
- (5) θ_1 , θ_2 , θ_3 , n_1 , n_2 , n_3 の間に成りたつ関係式を示せ.
- (6) 媒質 II と媒質 III の境界面上に円板を置き、S が媒質 III のどこからも見えなくなるようにした。このときの円板の最小半径 R を n_1 , n_2 , n_3 , h_1 , h_2 で表せ。
- (7) 円板を取りのぞき、Sを媒質IIIから見たとき、Sは媒質IIIと媒質IIIの境界面から鉛直方向に距離がh'の位置S'にあるように見えた、いま、Sを媒質IIIの真上付近から見たとすると、 θ_1 、 θ_2 、 θ_3 は十分小さく、tan θ_i = $\sin\theta_i$ (i=1, 2, 3) が成りたつと考えてよい。Sを媒質IIIの真上付近から見たとき、h'を n_1 、 n_2 、 n_3 、 n_4 , n_5 で表せ、

(2006 長崎大)